# Altruism, Insurance, and Costly Solidarity Commitments

Vesall Nourani (MIT), Chris Barrett (Cornell), Eleonora Patacchini (Cornell) and Thomas Walker (World Bank)

### July 22, 2019

AAEA annual meetings, Atlanta, GA

### MOTIVATION

- Social solidarity networks have long been observed to play a central role in village economies.
- Dominant framework: inter-household transfers driven by self-enforcing informal insurance contracts among self-interested agents. (Coate and Ravallion, 1993; Townsend, 1994...)
- Additionally, social taxation, a self-interested norm, increases incentive to hide income. (Jakiela and Ozier, 2016; Squires, 2017)
- **Key Common Assumption:** Inter-household transfers increase with public income shocks but are invariant wrt private ones. That assumption is in principle testable.

### MOTIVATION

- Social solidarity networks have long been observed to play a central role in village economies.
- Dominant framework: inter-household transfers driven by self-enforcing informal insurance contracts among self-interested agents. (Coate and Ravallion, 1993; Townsend, 1994...)
- Additionally, social taxation, a self-interested norm, increases incentive to hide income. (Jakiela and Ozier, 2016; Squires, 2017)
- Key Common Assumption: Inter-household transfers increase with public income shocks but are invariant wrt private ones. That assumption is in principle testable.

### IN THIS PAPER

- · Study patterns of inter-hh transfers in 4 Ghana villages
  - Experiment with public and private i.i.d. cash prizes
- Evidence goes against the dominant framework:
  - 1 N of transfers: private, public > 0
  - 2 Average value of transfers: private > public > 0
  - 3 Transfers from private income directed towards needy.
  - ④ Giving shuts down when network gets too large.
- Implications: Altruistic motives matter. Need new model:
  - (Impurely) altruistic preferences w/ costly link maintenance explains results.
  - Social pressures from observable income shocks can crowd out progressive altruistic motives.
  - Public income only shared if hh network is small.
  - Policies aiming at transparent transfers may unintentionally erode local moral codes.





- Baseline social networks gift-giving networks
- Experimental Variation: idiosyncratic lottery winnings
  - Publicly revealed winners (20 per round)
  - Privately revealed winners (20 per round)
- Gift-giving behavior and household consumption





- Baseline social networks gift-giving networks
- Experimental Variation: idiosyncratic lottery winnings
  - Publicly revealed winners (20 per round)
  - Privately revealed winners (20 per round)
- Gift-giving behavior and household consumption





- Baseline social networks gift-giving networks
- Experimental Variation: idiosyncratic lottery winnings
  - Publicly revealed winners (20 per round)
  - Privately revealed winners (20 per round)
- Gift-giving behavior and household consumption





- Baseline social networks gift-giving networks
- Experimental Variation: idiosyncratic lottery winnings
  - Publicly revealed winners (20 per round)
  - Privately revealed winners (20 per round)
- Gift-giving behavior and household consumption)

### Lotteries

### PRIVATE AND PUBLIC



### GIFT GIVING AND CONSUMPTION

| Feb | '09 June '(                                            | 09           |                |                | Oct '09      | )              |          |
|-----|--------------------------------------------------------|--------------|----------------|----------------|--------------|----------------|----------|
| C   | Apr '09                                                |              | Aug 'C         | )9             | 0            |                | Dec '09  |
| -   |                                                        |              | Maara          | 04             |              | 05             |          |
| -   |                                                        | IN           | Mean           | Sa             | 5 p-tile     | 95 p-tile      | <u> </u> |
|     | Fixed Over Time:                                       |              |                |                |              |                |          |
|     | HH size                                                | 315          | 6.66           | 2.64           | 3            | 11             |          |
|     | N of HH in Solidarity Network                          | 315          | 11.40          | 10.08          | 0            | 32             |          |
|     | Cash Gifts Given (last 2 months                        | s, GH¢):     |                |                |              |                |          |
|     | Number                                                 | 1,561        | 0.74           | 1.22           | 0            | 3              |          |
|     | Value (Total)                                          | 1,561        | 9.77           | 62.73          | 0            | 35             |          |
|     | Value (Conditional on Giving)                          | 615          | 24.79          | 98.11          | 1            | 80             |          |
|     | Food Consumption (last month                           | , GH¢):      |                |                |              |                |          |
|     | PC Food Consumption<br>PC Food (Conditional on Giving) | 1,568<br>615 | 21.51<br>21.74 | 12.47<br>13.43 | 7.13<br>7.85 | 44.28<br>45.63 |          |
|     |                                                        |              |                |                |              |                |          |

### GIFT-GIVING BEHAVIOR

### ESTIMATION STRATEGY

$$y_{itk} = \alpha + \beta_v \text{Private}_{it} + \beta_b \text{Public}_{it} + \text{hh}_i + \text{r}_{tk} + \epsilon_{it}$$

• Household *i*, Round *t*, Village *k* 

• 
$$Private_{it} = \begin{cases} 1 & \text{if won lottery} \\ 0 & \text{otherwise.} \end{cases}$$

- yitk: Value (Total), Value (Average), N Gifts Given
  - Log transformation
  - Bounded below by zero  $\Rightarrow$  Tobit Estimator

### Private Income Increases Gift-Giving

### EXPERIMENTAL RESULTS

|                             |           | (1)           | (2)             | (3)      |
|-----------------------------|-----------|---------------|-----------------|----------|
| Gift-giving:                |           | Value (Total) | Value (Average) | Number   |
|                             |           |               |                 |          |
| Won in Private              | $\beta_v$ | 0.243***      | 0.195***        | 0.222*** |
|                             |           | (0.084)       | (0.066)         | (0.074)  |
| Won in Public               | βb        | 0.108         | 0.0289          | 0.158**  |
|                             |           | (0.081)       | (0.065)         | (0.071)  |
| Household FE                |           | Yes           | Yes             | Yes      |
| $Round \times Village \ FE$ |           | Yes           | Yes             | Yes      |
| Test: $\beta_v = \beta_b$   |           | 0.23          | 0.06            | 0.51     |
| Left-censored N             |           | 946           | 946             | 946      |
| Ν                           |           | 1,561         | 1,561           | 1,561    |



### Private Income Increases Gift-Giving

### EXPERIMENTAL RESULTS

|                             |           | (1) (2)       |                 | (3)      |
|-----------------------------|-----------|---------------|-----------------|----------|
| Gift-giving:                |           | Value (Total) | Value (Average) | Number   |
|                             |           |               | $\frown$        |          |
| Won in Private              | $\beta_v$ | 0.243***      | 0.195***        | 0.222*** |
|                             |           | (0.084)       | (0.066)         | (0.074)  |
| Won in Public               | βb        | 0.108         | 0.0289          | 0.158**  |
|                             |           | (0.081)       | (0.065)         | (0.071)  |
| Household FE                |           | Yes           | Yes             | Yes      |
| $Round \times Village \ FE$ |           | Yes           | Yes             | Yes      |
| Test: $\beta_v = \beta_b$   |           | 0.23          | 0.06            | 0.51     |
| Left-censored N             |           | 946           | 946             | 946      |
| Ν                           |           | 1,561         | 1,561           | 1,561    |



### Key Takeaways

- 1 Strongly reject 'no giving from private' null
- 2 Cannot reject 'giving increases in public winnings' null
- Seach result inconsistent with informal insurance or social taxation models that rely solely on self-interested behavior.

### Need a more encompassing theory!

### Model

MODIFY FOSTER AND ROSENZWEIG (RESTAT 2001)

- Standard 2 agent stochastic dynamic game i.e., insurance contract with limited commitment.
- gift requests increasing in network size and observability of income - i.e., social taxation exists
- Maintaining solidarity link requires costly effort.
- · Impurely altruistic preferences for others' utility
  - Implies giving even with private income.
  - Decreasing function in gift requests
- Observable income attracts more gift requests.
- NEW: Shut-down hypothesis: observable income leads households with large gift networks to default.
- **NEW: Progressive altruistic transfers:** Private income directed to least well-off hhs.

11/17

### MODEL PREDICTIONS (U FIGURE) (T FIGURE)

GIFT-GIVING BEHAVIOR WITH THE SHUT-DOWN EFFECT

### $y_{itk} = \alpha + \beta_v \text{Private}_{it} + \beta_b \text{Public}_{it} + \text{hh}_i + \text{r}_{tk} + \epsilon_{it}$ $+ \beta_{vg} \text{Private}_{it} \times \text{Network}_i + \beta_{bg} \text{Public}_{it} \times \text{Network}$ $+ \text{hh}_i + \text{r}_{tk} + \epsilon_{it}$

### yit: N Gifts Given, Value (Total), Value (Average)

Network: Reciprocal Gift-Network Size

|          | Predictions             |     |                               |                     |                         |  |  |
|----------|-------------------------|-----|-------------------------------|---------------------|-------------------------|--|--|
| Shutdown |                         |     | Value (Average) N Gifts Given |                     | Total Value             |  |  |
|          |                         |     | $\beta_b < \beta_v$           | $\beta_b?\beta_v =$ | $\beta_b?\beta_v = (<)$ |  |  |
| β        | $\beta > 0, \beta_{bg}$ | < 0 |                               | $\beta_b > \beta_v$ | $\beta_b \ge \beta_v$   |  |  |

11/17

### MODEL PREDICTIONS (U FIGURE) (T FIGURE)

GIFT-GIVING BEHAVIOR WITH THE SHUT-DOWN EFFECT

### $y_{itk} = \alpha + \beta_v \text{Private}_{it} + \beta_b \text{Public}_{it} + \text{hh}_i + \text{r}_{tk} + \epsilon_{it}$ $+ \beta_{vg} \text{Private}_{it} \times \text{Network}_i + \beta_{bg} \text{Public}_{it} \times \text{Network}$ $+ \text{hh}_i + \text{r}_{tk} + \epsilon_{it}$

### yit: N Gifts Given, Value (Total), Value (Average)

Network: Reciprocal Gift-Network Size

|          | Predictions                  |                                |                     |                         |  |  |  |
|----------|------------------------------|--------------------------------|---------------------|-------------------------|--|--|--|
| Shutdown |                              | Value (Average)                | N Gifts Given       | Total Value             |  |  |  |
|          |                              | $\beta_b < \beta_v \checkmark$ | $\beta_b?\beta_v =$ | $\beta_b?\beta_v = (<)$ |  |  |  |
| β        | $\beta > 0,  \beta_{bg} < 0$ | 0                              | $\beta_b > \beta_v$ | $\beta_b \ge \beta_v$   |  |  |  |

MODEL PREDICTIONS UFIGURE TFIGURE

GIFT-GIVING BEHAVIOR WITH THE SHUT-DOWN EFFECT

$$y_{itk} = \alpha + \beta_{v} \text{Private}_{it} + \beta_{b} \text{Public}_{it} + \text{hh}_{i} + \text{r}_{tk} + \epsilon_{it} + \beta_{vg} \text{Private}_{it} \times \text{Network}_{i} + \beta_{bg} \text{Public}_{it} \times \text{Network}_{i} + \text{hh}_{i} + \text{r}_{tk} + \epsilon_{it}$$

y<sub>it</sub>: N Gifts Given, Value (Total), Value (Average)Network: Reciprocal Gift-Network Size

|          | Predictions       |                  |                                |                     |                         |  |  |
|----------|-------------------|------------------|--------------------------------|---------------------|-------------------------|--|--|
| Shutdown |                   | down             | Value (Average)                | N Gifts Given       | Total Value             |  |  |
|          |                   |                  | $\beta_b < \beta_v \checkmark$ | $\beta_b?\beta_v =$ | $\beta_b?\beta_v = (<)$ |  |  |
| βĿ       | <sub>b</sub> > 0, | $\beta_{bg} < 0$ |                                | $\beta_b > \beta_v$ | $\beta_b \geq \beta_v$  |  |  |

### INTERACTING NETWORK SIZE

|                                                                   |                     | (1)           | (2)             | (3)       |
|-------------------------------------------------------------------|---------------------|---------------|-----------------|-----------|
| Gift-giving:                                                      | Coef. Hyp.          | Value (Total) | Value (Average) | Number    |
|                                                                   |                     |               |                 |           |
| Won in Private                                                    | $\beta_v > 0$       | 0.274**       | 0.235**         | 0.144     |
|                                                                   |                     | (0.131)       | (0.104)         | (0.115)   |
| Won in Private $\times$ Network                                   | $\beta_{vg} \leq 0$ | -0.003        | -0.003          | 0.007     |
|                                                                   |                     | (0.009)       | (0.007)         | (0.008)   |
| Won in Public                                                     | $\beta_b > 0$       | 0.403***      | 0.205*          | 0.572***  |
|                                                                   |                     | (0.132)       | (0.105)         | (0.115)   |
| Won in Public × Network                                           | $\beta_{bg} < 0$    | -0.028***     | -0.017**        | -0.040*** |
|                                                                   |                     | (0.010)       | (0.008)         | (0.009)   |
| Household FE                                                      |                     | Yes           | Yes             | Yes       |
| Round $\times$ Village FE                                         |                     | Yes           | Yes             | Yes       |
| $\beta_v = \beta_b$                                               |                     | 0.47          | 0.83            | 0.01      |
| $\beta_v + \beta_{vg} \times 5 = \beta_b + \beta_{bg} \times 5$   |                     | 0.99          | 0.36            | 0.10      |
| $\beta_v + \beta_{vg} \times 10 = \beta_b + \beta_{bg} \times 10$ |                     | 0.27          | 0.07            | 0.69      |
| $\beta_v + \beta_{vg} \times 20 = \beta_b + \beta_{bg} \times 20$ |                     | 0.02          | 0.02            | 0.00      |
| Left-censored N                                                   |                     | 946           | 946             | 946       |
| N                                                                 |                     | 1,561         | 1,561           | 1,561     |



### INTERACTING NETWORK SIZE

|                                                                   |                     | (1)           | (2)             | (3)       |
|-------------------------------------------------------------------|---------------------|---------------|-----------------|-----------|
| Gift-giving:                                                      | Coef. Hyp.          | Value (Total) | Value (Average) | Number    |
|                                                                   |                     |               |                 |           |
| Won in Private                                                    | $\beta_v > 0$       | 0.274**       | 0.235**         | 0.144     |
|                                                                   |                     | (0.131)       | (0.104)         | (0.115)   |
| Won in Private × Network                                          | $\beta_{vg} \leq 0$ | -0.003        | -0.003          | 0.007     |
|                                                                   |                     | (0.009)       | (0.007)         | (0.008)   |
| Won in Public                                                     | $\beta_b > 0$       | 0.403***      | 0.205*          | 0.572***  |
|                                                                   |                     | (0.132)       | (0.105)         | (0.115)   |
| Won in Public × Network                                           | $\beta_{bg} < 0$    | -0.028***     | -0.017**        | -0.040*** |
|                                                                   |                     | (0.010)       | (0.008)         | (0.009)   |
| Household FE                                                      |                     | Yes           | Yes             | Yes       |
| Round $	imes$ Village FE                                          |                     | Yes           | Yes             | Yes       |
| $\beta_v = \beta_b$                                               |                     | 0.47          | 0.83            | 0.01      |
| $\beta_v + \beta_{vg} \times 5 = \beta_b + \beta_{bg} \times 5$   |                     | 0.99          | 0.36            | 0.10      |
| $\beta_v + \beta_{vg} \times 10 = \beta_b + \beta_{bg} \times 10$ |                     | 0.27          | 0.07            | 0.69      |
| $\beta_v + \beta_{vg} \times 20 = \beta_b + \beta_{bg} \times 20$ |                     | 0.02          | 0.02            | 0.00      |
| Left-censored N                                                   |                     | 946           | 946             | 946       |
| Ν                                                                 |                     | 1,561         | 1,561           | 1,561     |



### INTERACTING NETWORK SIZE

|                                                                   |                     | (1)           | (2)             | (3)       |
|-------------------------------------------------------------------|---------------------|---------------|-----------------|-----------|
| Gift-giving:                                                      | Coef. Hyp.          | Value (Total) | Value (Average) | Number    |
|                                                                   |                     |               |                 |           |
| Won in Private                                                    | $\beta_v > 0$       | 0.274**       | 0.235**         | 0.144     |
|                                                                   |                     | (0.131)       | (0.104)         | (0.115)   |
| Won in Private × Network                                          | $\beta_{vg} \leq 0$ | -0.003        | -0.003          | 0.007     |
|                                                                   |                     | (0.009)       | (0.007)         | (0.008)   |
| Won in Public                                                     | $\beta_b > 0$       | 0.403***      | 0.205*          | 0.572***  |
|                                                                   |                     | (0.132)       | (0.105)         | (0.115)   |
| Won in Public × Network                                           | $\beta_{bg} < 0$    | -0.028***     | -0.017**        | -0.040*** |
|                                                                   |                     | (0.010)       | (0.008)         | (0.009)   |
| Household FE                                                      |                     | Yes           | Yes             | Yes       |
| Round $	imes$ Village FE                                          |                     | Yes           | Yes             | Yes       |
| $\beta_v = \beta_b$                                               |                     | 0.47          | 0.83            | 0.01      |
| $\beta_v + \beta_{vg} \times 5 = \beta_b + \beta_{bg} \times 5$   |                     | 0.99          | 0.36            | 0.10      |
| $\beta_v + \beta_{vg} \times 10 = \beta_b + \beta_{bg} \times 10$ |                     | 0.27          | 0.07            | 0.69      |
| $\beta_v + \beta_{vg} \times 20 = \beta_b + \beta_{bg} \times 20$ |                     | 0.02          | 0.02            | 0.00      |
| Left-censored N                                                   |                     | 946           | 946             | 946       |
| N                                                                 |                     | 1,561         | 1,561           | 1,561     |



### INTERACTING NETWORK SIZE

|                                                                     |                     | (1)           | (2)             | (3)       |
|---------------------------------------------------------------------|---------------------|---------------|-----------------|-----------|
| Gift-giving:                                                        | Coef. Hyp.          | Value (Total) | Value (Average) | Number    |
|                                                                     |                     |               |                 |           |
| Won in Private                                                      | $\beta_v > 0$       | 0.274**       | 0.235**         | 0.144     |
|                                                                     |                     | (0.131)       | (0.104)         | (0.115)   |
| Won in Private $\times$ Network                                     | $\beta_{vg} \leq 0$ | -0.003        | -0.003          | 0.007     |
|                                                                     |                     | (0.009)       | (0.007)         | (0.008)   |
| Won in Public                                                       | $\beta_b > 0$       | 0.403***      | 0.205*          | 0.572***  |
|                                                                     |                     | (0.132)       | (0.105)         | (0.115)   |
| Won in Public $	imes$ Network                                       | $\beta_{bg} < 0$    | -0.028***     | -0.017**        | -0.040*** |
|                                                                     |                     | (0.010)       | (0.008)         | (0.009)   |
| Household FE                                                        |                     | Yes           | Yes             | Yes       |
| Round $\times$ Village FE                                           |                     | Yes           | Yes             | Yes       |
| $\beta_v = \beta_b$                                                 |                     | 0.47          | 0.83            | 0.01      |
| $\beta_v + \beta_{vg} \times 5 = \beta_b + \beta_{bg} \times 5$     |                     | 0.99          | 0.36            | 0.10      |
| $\beta_v + \beta_{va} \times 10 = \beta_b + \beta_{ba} \times 10$   |                     | 0.27          | 0.07            | 0.69      |
| $(\beta_v + \beta_{vg} \times 20 = \beta_b + \beta_{bg} \times 20)$ |                     | 0.02          | 0.02            | 0.00      |
| Left-censored N                                                     |                     | 946           | 946             | 946       |
| N                                                                   |                     | 1,561         | 1,561           | 1,561     |

### Non-parametric shut-down hypothesis

TOTAL VALUE



Note: Including 2nd and 3rd order polynomial interactions. No HH FE.

### TRANSFERS TO RELATIVELY POOR HOUSEHOLDS

DYADIC ANALYSIS EQUATION

|                                                                                 |                 | (1)      | (2)     |
|---------------------------------------------------------------------------------|-----------------|----------|---------|
|                                                                                 |                 | Amount   | Number  |
| $(Food_{it} - Food_{it})$                                                       | γ               | 0.347**  | 1.069** |
|                                                                                 |                 | (0.171)  | (0.467) |
| Won in Private $\times$ ( <i>Food<sub>it</sub></i> – <i>Food<sub>it</sub></i> ) | $\beta_{VX}$    | 2.003*** | 2.051** |
|                                                                                 | • •             | (0.702)  | (1.038) |
| Won in Public $\times$ ( <i>Food<sub>it</sub></i> – <i>Food<sub>it</sub></i> )  | $\beta_{b\chi}$ | -0.185   | -0.313  |
|                                                                                 | • •             | (0.430)  | (1.272) |
| Won in Private                                                                  |                 | Yes      | Yes     |
| Won in Public                                                                   |                 | Yes      | Yes     |
| HH FE                                                                           |                 | Yes      | Yes     |
| Round FE                                                                        |                 | Yes      | Yes     |
| Test: $\beta_{v\chi} = \beta_{b\chi}$                                           |                 | 0.01     | 0.18    |
| Left-censored N                                                                 |                 | 17,349   |         |
| Ν                                                                               |                 | 17,527   | 17,527  |

\*p < 0.1, \*\*p < 0.05, \*\*\*p < 0.01. Dependent Variable equals log total value of (cash) gifts given per adult from household *j* to household *j* in column 1; number of gifts per adult in column 2. Won in Private/Public  $\in \{0, 1\}$  Tobit estimator used in columns 1. Poisson estimator in column 2. Standard errors clusterd by dyad. *Food*<sub>*i*t</sub> – *Food*<sub>*j*t</sub> is difference in log per capita food consumption.

### TRANSFERS TO RELATIVELY POOR HOUSEHOLDS

DYADIC ANALYSIS EQUATION

(1) (2) Amount Number (Food<sub>it</sub> - Food<sub>it</sub>) 0.347\*\* 1.069\*\* ν (0.171)(0.467)Won in Private  $\times$  (Food<sub>it</sub> – Food<sub>it</sub>) 2.003\*\*\* 2.051\*\*  $\beta_{V\chi}$ (0.702)(1.038)Won in Public  $\times$  (Food<sub>it</sub> – Food<sub>it</sub>)  $\beta_{b\chi}$ -0.185 -0.313(0.430)(1.272)Won in Private Yes Yes Won in Public Yes Yes HH FF Yes Yes Round FF Yes Yes Test:  $\beta_{VX} = \beta_{bX}$ 0.01 0.18 Left-censored N 17,349 Ν 17,527 17,527

\*p < 0.1, \*\*p < 0.05, \*\*\*p < 0.01. Dependent Variable equals log total value of (cash) gifts given per adult from household *i* to household *j* in column 1; number of gifts per adult in column 2. Won in Private/Public  $\in \{0, 1\}$  Tobit estimator used in columns 1. Poisson estimator in column 2. Standard errors clusterd by dyad. *Food*<sub>*i*t</sub> – *Food*<sub>*j*t</sub> is difference in log per capita food consumption.

### Public Income Crowds Out Altruism

QUANTILE REGRESSION OF FOOD CONSUMPTION ON NETWORK WINNINGS TESTS EQUATION



### Conclusion

|                |                | Predictions and Results    |                                |                                |              |  |  |  |
|----------------|----------------|----------------------------|--------------------------------|--------------------------------|--------------|--|--|--|
| Variables:     |                | All                        | Value (Average)                | N Gifts Given                  | Food         |  |  |  |
| No Interaction |                |                            | $\beta_b < \beta_v \checkmark$ | $\beta_b ? \beta_v =$          | $\checkmark$ |  |  |  |
| Interaction    | $\beta_b > 0,$ | $\beta_{bg} < 0\checkmark$ |                                | $\beta_b > \beta_v \checkmark$ |              |  |  |  |

- Results refine our understanding of motives for inter-hh transfers within networks.
  - More than self-interested informal insurance and social taxation; altruism matters.
- Voluntary redistribution towards the needy.
- Social taxation norms induce inefficient redistribution.
- Trade-off between network size and altruistic giving.
- **Policy:** Transparent cash transfers may crowd out altruistic motives that lead to efficient redistribution.

# Thank you!

Send Comments to :

- cbb2@cornell.edu
- vnourani@mit.edu



### Additional Results (BACK)

- Reject Full Insurance: Using Townsend's (1994) estimation method, reject full insurance within solidarity network. Townsend Test
- Information hypothesis: Difference in giving to family vs. friends rejects information hypothesis. Friends & Family Table
- **Punishing Defectors:** those who shut-down do not receive gifts either. Reciprocity

# Gifts as Share of Per Capita Food Expenditure



# Unsolicited and Solicited Gifts in Our Data

21/17



Васк

# RECIPROCAL GIFT NETWORKS (PRESENTATION) (BACKUP)



22/17

• "Have you given gifts to XX (for all in sample)?" (receive)



- **Reciprocal link:** both households indicate at least one reciprocal connection to someone in the other household.
  - 3,648 out of 27,303 possible links (13.4%)

Back

LOTTERIES TOWNSEND TEST PRESENTATION BACKUP

PRIVATE AND PUBLIC



# GIFT GIVING AND CONSUMPTION PRESENTATION BACKUP

| Feb | .'09 June '0                                             | )9                    |                       |                        | Oct '09      | )              |              |
|-----|----------------------------------------------------------|-----------------------|-----------------------|------------------------|--------------|----------------|--------------|
| C   | Apr '09                                                  |                       | Aug 'C                | )9                     | 0            |                | Dec '09      |
| -   |                                                          | N                     | Mean                  | Sd                     | 5 p-tile     | 95 p-tile      | <del>)</del> |
|     | Fixed Over Time:                                         |                       |                       |                        |              |                |              |
|     | HH size<br>N of HH in Solidarity Network                 | 315<br>315            | 6.66<br>11.40         | 2.64<br>10.08          | 3<br>0       | 11<br>32       |              |
|     | Cash Gifts Given (last 2 months                          | s, GH¢):              |                       |                        |              |                |              |
|     | Number<br>Value (Total)<br>Value (Conditional on Giving) | 1,561<br>1,561<br>615 | 0.74<br>9.77<br>24.79 | 1.22<br>62.73<br>98.11 | 0<br>0<br>1  | 3<br>35<br>80  |              |
|     | Food Consumption (last month                             | , GH¢):               |                       |                        |              |                |              |
|     | PC Food Consumption<br>PC Food (Conditional on Giving)   | 1,568<br>615          | 21.51<br>21.74        | 12.47<br>13.43         | 7.13<br>7.85 | 44.28<br>45.63 |              |

### Experimental Results

### PRIVATE CASH PRIZE LEADS TO MORE GIFT-GIVING

|                           |           | (1)           | (2)             | (3)      |
|---------------------------|-----------|---------------|-----------------|----------|
| Gift-giving:              |           | Value (Total) | Value (Average) | Number   |
|                           |           |               |                 |          |
| Value in Private          | $\beta_v$ | 0.054***      | 0.038**         | 0.058*** |
|                           |           | (0.019)       | (0.015)         | (0.017)  |
| Value in Public           | βь        | 0.003         | -0.010          | 0.033*   |
|                           |           | (0.020)       | (0.016)         | (0.017)  |
| Household FE              |           | Yes           | Yes             | Yes      |
| Round $\times$ Village FE |           | Yes           | Yes             | Yes      |
| Test: $\beta_v = \beta_b$ |           | 0.06          | 0.03            | 0.30     |
| Left-censored N           |           | 946           | 946             | 946      |
| Ν                         |           | 1,561         | 1,561           | 1,561    |

# Model Setup

BUILD ON FOSTER AND ROSENZWEIG (2001)

### Environment

- 2 households: 1 and 2
- Period *t* state-dependent income:  $y_i(s_t), i \in \{1, 2\}$ 
  - $s_t \in S$ , the set of all states
  - *h*<sub>t</sub>, history of state sequences
- HH *i* consumption:  $c_{it}(h_t)$

### • Preferences:

- Concave utility in consumption:  $u_i(c_{it}(h_t))$
- 0 ≤ γ < 1: Altruistic preferences for other's utility</li>
- Maximize lifetime discounted ( $\delta < 1$ ) utility surplus,  $U_i$

### Solution:

- Transfers from 1 to 2,  $\tau(h_t)$
- Dynamic Limited Commitment Nash Equilibrium

# Model Setup

OUR MODIFICATIONS

### Environment

- Gift-network size:  $g_i \in \mathbb{Z}^+$
- Three types of income for each household:
  - No shock to income
  - 2 Unobservable increase in income
  - Observable increase in income

### Preferences

- $\gamma(h_t, g_i)$ : altruism concave function in network size
- *α*(*g<sub>i</sub>*): cost of maintaining gift-ties

### Assumptions:

- 1 More gift requests when income is observable
- 2 Altruism decreasing in gifts-given
- 3 Costly network maintenance

Formal Model / Predic

Predictions

### Formal Model

• Single-period utility (HH 1):

$$u_{1}(y_{1}(s_{t}) - (h_{t})) + \gamma(h_{t}, g_{1})u_{2}(y_{2}(s_{t}) + \tau(h_{t}))$$

$$U_{1}^{s}(U_{2}^{s}) = \max_{\tau_{s}, (U_{1}^{r}, U_{2}^{r})_{r=1}^{s}} \quad u_{1}(y_{1}(s) - \tau_{s}) - u_{1}(y_{1}(s)))$$

$$+ \gamma_{1}(g_{1}(s))u_{2}(y_{2}(s) + \tau_{s}) - \gamma_{1}(g_{1}(s))u_{2}(y_{2}(s)))$$

$$- \alpha_{1}(g_{1}) + \delta \sum \pi_{sr}U_{1}^{r}(U_{2}^{r}) \text{ subject to}$$

 $\begin{array}{lll} \lambda: & \text{Promise keeping} \\ \delta\pi_{sr}\mu_r: & U_1^r(U_2^r) \geq \underline{U}_1^r = 0 \quad \forall r \in S \\ \delta\pi_r\phi_r: & U_2^r \geq \underline{U}_2^r = 0 \quad \forall r \in S \\ \psi_1, \psi_2: & \textit{Non-negativity} \end{array}$ 

### STATE SPACE

FIVE STATES - MATCHING THE EMPIRICAL CONTEXT

- 1 zz Niether household wins a cash lottery
- 2 *zb* Household 1 wins a **puBlicly** revealed prize.
- **3** *zv* Household 1 wins a **priVately** revealed prize.
- 4 bz Household 2 public
- 5 vz Household 2 private

When income is observable, more gifts requested

 $p_1(zb) > p_1(s') \qquad \text{for all } s' \neq \{zb\} \text{ and}$   $p_2(bz) > p_2(s'') \qquad \text{for all } s'' \neq \{bz\}$ 

### **CONTRACT SOLUTION**

- Solution: characterize contract using  $\lambda$  (Ligon and Worrall, 1988)

$$\frac{u_1'(y_1(s_t) - \tau(h_t)) + \gamma_1(g_1(h_t))u_2'(y_2(s_t) + \tau(h_t))}{u_2'(y_2(s_t) + \tau(h_t)) + \gamma_2(g_2(h_t))u_1'(y_1(s_t) - \tau(h_t))} = \lambda + \frac{\psi_2 - \psi_1}{u_2'(y_2(s_t) - \tau(h_t))}$$
(1)

$$\lambda(h_{t+1}) = \begin{cases} \frac{\lambda_s}{\lambda} \text{ if } \lambda(h_t) < \underline{\lambda}_s \\ \overline{\lambda}(h_t) \text{ if } \underline{\lambda}_s \leq \lambda(h_t) \leq \overline{\lambda}_s \\ \overline{\lambda}_s \text{ if } \lambda(h_t) > \overline{\lambda}_s. \end{cases}$$

Depends on nature of overlap of

$$\left[\underline{\lambda}(s), \overline{\lambda}(s)\right]$$
 and  $\left[\underline{\lambda}(r), \overline{\lambda}(r)\right]$ 

# **CONTRACT INTUITION**

LIGON ET. AL (2002)



Back

### **CONTRACT INTERVALS**



### **PREDICTION 1 - SHUT-DOWN HYPOTHESIS**



### $Prediction \ 2 \ \text{and} \ 3$

PRIVATE  $\rightarrow$  larger average gifts; Public  $\rightarrow$  larger N gifts (before shutdown)



### PREDICTIONS

**Prediction 1 (The Shut-down Hypothesis)** Large gift-giving networks shut down giving especially in public winnings.

# **Prediction 2 (Private = Higher Average Transfer Value)** $\tau_{zv} > \tau_{bz}$ on average.

Prediction 3 (Public = Higher Number of Gifts Given)  $\sum_{j=1}^{N} \mathbb{1}(\tau_{ij}(zb) \neq 0) > \sum_{j=1}^{N} \mathbb{1}(\tau_{ij}(zv) \neq 0)$ 

**Prediction 4 (Public = Larger Total Transfers)** *Prior to shut-down*  $\sum_{i=1}^{N} \mathbb{1}\tau_{ij}(zb) > \sum_{i=1}^{N} \mathbb{1}\tau_{ij}(zv)$ 

Prediction 5 (Consumption Increasing in Others' Winnings) Specifically in private winnings:  $c_1(vz) > c_1(zz)$ 



Results

### SHUTDOWN HYPOTHESIS WITH INTENSITY OF WINNINGS

|                                                                   |                     | (1)           | (2)             | (3)       |
|-------------------------------------------------------------------|---------------------|---------------|-----------------|-----------|
| Gift-giving:                                                      | Coef. Hyp.          | Value (Total) | Value (Average) | Number    |
| Value of Private Cash Prize                                       | ß                   | 0 082**       | 0.057**         | 0.062**   |
| Value of Frivale Casiff fize                                      | $p_V > 0$           | (0.032)       | (0.026)         | (0.028)   |
| Value of Private Cash Prize $	imes$ Network                       | $\beta_{vq} \leq 0$ | -0.002        | -0.002          | -0.000    |
|                                                                   |                     | (0.002)       | (0.002)         | (0.002)   |
| Value of Public Cash Prize                                        | $\beta_b > 0$       | 0.071**       | 0.028           | 0.138***  |
|                                                                   |                     | (0.031)       | (0.025)         | (0.027)   |
| Value of Public Cash Prize $	imes$ Network                        | $\beta_{bg} < 0$    | -0.008***     | -0.004**        | -0.012*** |
|                                                                   |                     | (0.003)       | (0.002)         | (0.002)   |
| Household FE                                                      |                     | Yes           | Yes             | Yes       |
| Round × Village FE                                                |                     | Yes           | Yes             | Yes       |
| $\beta_v = \beta_b$                                               |                     | 0.81          | 0.41            | 0.05      |
| $\beta_v + \beta_{vg} \times 5 = \beta_b + \beta_{bg} \times 5$   |                     | 0.25          | 0.10            | 0.53      |
| $\beta_v + \beta_{vg} \times 10 = \beta_b + \beta_{bg} \times 10$ |                     | 0.02          | 0.01            | 0.12      |
| $\beta_v + \beta_{vg} \times 20 = \beta_b + \beta_{bg} \times 20$ |                     | 0.01          | 0.01            | 0.00      |
| Left-censored N                                                   |                     | 946           | 946             | 946       |
| N                                                                 |                     | 1,561         | 1,561           | 1,561     |
|                                                                   |                     |               |                 |           |

\*p < 0.1, \*\*p < 0.05, \*\*\*p < 0.01. Dependent Variable equals log total value of (cash) gifts given per adult in hh in column 1; average gift value per adult in column 2; number of gifts per adult in column 3. Value in Private/Public

 $\in \{0,\,1,\,2,\,3.5,\,5,\,7\}$  Tobit estimator used in all columns.

### Results N Gifts Given

### Non-parametric analysis of shut-down hypothesis



Note: Including 2nd and 3rd order polynomial interactions.

# **ESTIMATION STRATEGY**

OWN CONSUMPTION AS FUNCTION OF OTHERS' WINNINGS

$$y_{it} = \alpha + \beta_{v} \operatorname{Private}_{it} + \beta_{b} \operatorname{Public}_{it} + \beta_{vn} \overline{\operatorname{Private}}_{it} + \beta_{bn} \overline{\operatorname{Public}}_{it} + hh_{i} + r_{t} + \epsilon_{it}$$

- Private<sub>it</sub> Network Average Value of Winnings
   Private<sub>it</sub> = ∑<sub>j=1</sub><sup>N</sup> Private<sub>j</sub>×1(g<sub>ij</sub>=1) ∑<sub>j=1</sub><sup>N</sup> 1(g<sub>ij</sub>=1)
- Prediction:  $\beta_{vn} > \beta_{bn}$  in lower quantiles.

Back

### Results

### FOOD CONSUMPTION INCREASING IN PRIVATE NETWORK WINNINGS FOR NEEDY



### **ESTIMATION STRATEGY**

GIFT-GIVING WITHIN A DYAD (i to j)

 $y_{ijtv} = \alpha + \beta_{v} \text{Private}_{it} + \beta_{b} \text{Public}_{it} + \text{village}_{v} + r_{t} + \epsilon_{ijt} + \beta_{v\chi} \text{Private}_{it} \times (Food_{it} - Food_{jt}) + \beta_{b\chi} \text{Public}_{it} \times (Food_{it} - Food_{jt}) + \gamma(Food_{it} - Food_{it}) + \text{village}_{v} + r_{t} + \epsilon_{iit}$ 

• **y**<sub>ijtv</sub> : Log Value<sub>ij</sub>, N Gifts <sub>ij</sub> (from *i* to *j*)

 $\frac{\beta_{v} > \beta_{b}}{(\text{Average Gift Value})}$ 



### **ESTIMATION STRATEGY**

GIFT-GIVING WITHIN A DYAD (i to j)

$$y_{ijtv} = \alpha + \beta_{v} \text{Private}_{it} + \beta_{b} \text{Public}_{it} + \text{village}_{v} + r_{t} + \epsilon_{ijt} + \beta_{v\chi} \text{Private}_{it} \times (Food_{it} - Food_{jt}) + \beta_{b\chi} \text{Public}_{it} \times (Food_{it} - Food_{jt}) + \gamma(Food_{it} - Food_{jt}) + \text{village}_{v} + r_{t} + \epsilon_{ijt}$$

• **y**<sub>ijtv</sub> : Log Value<sub>ij</sub>, N Gifts <sub>ij</sub> (from *i* to *j*)

 $\frac{\beta_{\nu} > \beta_{b}}{(\text{Average Gift Value})}$ 

$$\beta_{v\chi} > 0$$
  
(Gift Amount)

# Test of Full Risk Pooling

Townsend (1994)

|                                     |   | (1) $\Delta \operatorname{Food}_{it}$ |
|-------------------------------------|---|---------------------------------------|
| $\Delta$ Food (Network)             | β | 0.267***                              |
|                                     |   | (0.099)                               |
| Won in Private                      |   | 0.006                                 |
|                                     |   | (0.012)                               |
| Won in Public                       |   | -0.002                                |
|                                     |   | (0.008)                               |
| Village FE                          |   | Yes                                   |
| Test of Full Insurance: $\beta = 1$ |   | 0.00                                  |
| N ,                                 |   | 1,235                                 |

\*p < 0.1, \*\*p < 0.05, \*\*\*p < 0.01. Dependent Variable equals change in log per-capita food consumption ( $log(Food_{it}) - log(Food_{it-1})$ ). Network average is of same variable averaged within solidarity network. OLS estimator clustered at household level. "Won in Private/Public"  $\in \{0, 1\}$ . Prize value averaged at network level.

# **TESTING INFORMATION HYPOTHESIS**

GIFTS TO FAMILY VS. FRIENDS

|                           |    | (1)<br>All Family | (2)<br>Direct Family | (3)<br>Village Friends |
|---------------------------|----|-------------------|----------------------|------------------------|
| Won Private Cash Prize    | βv | -0.003            | -0.110               | 0.212**                |
|                           |    | (0.132)           | (0.141)              | (0.086)                |
| Won Public Cash Prize     | βь | 0.173             | 0.287**              | 0.060                  |
|                           |    | (0.124)           | (0.116)              | (0.093)                |
| Round $\times$ Village FE |    | Yes               | Yes                  | Yes                    |
| Left-censored N           |    | 1,173             | 1,307                | 1,340                  |
| Ν                         |    | 1,561             | 1,561                | 1,561                  |

42/17

\*p < 0.1, \*\*p < 0.05, \*\*\*p < 0.01. Dependent Variable equals log average value of (cash) gifts given per adult in HH. Column 1 consists of gifts to all family, column 2 to direct family who have their own households, column 3 to other extended family, column 4 to village friends. Won in Private/Public  $\in \{0, 1\}$  Tobit estimator used in all columns. Village FE does not converge. Results qualitatively similar to OLS with HH FE.

# **TESTING INFORMATION HYPOTHESIS**

### WITH SHUTDOWN EFFECT - GIFTS TO FAMILY VS. FRIENDS

|                                                 |              | (1)<br>All Family | (2)<br>Direct Family | (3)<br>Village Friends |
|-------------------------------------------------|--------------|-------------------|----------------------|------------------------|
| Won Private Cash Prize                          | βv           | -0.085            | -0.277               | 0.258**                |
|                                                 |              | (0.196)           | (0.220)              | (0.117)                |
| Won Private Cash Prize × Network                | $\beta_{Va}$ | 0.007             | 0.013                | -0.005                 |
|                                                 |              | (0.012)           | (0.013)              | (0.008)                |
| Won Public Cash Prize                           | βь           | 0.507***          | 0.566***             | 0.332**                |
|                                                 |              | (0.183)           | (0.171)              | (0.131)                |
| Won Public Cash Prize $	imes$ Network           | $\beta_{bq}$ | -0.034**          | -0.028**             | -0.036**               |
|                                                 | , ,          | (0.015)           | (0.014)              | (0.014)                |
| Round $\times$ Village FE                       |              | Yes               | Yes                  | Yes                    |
| Shut-down size. $X : \beta_b + \beta_{bq}X = 0$ |              | 15.0              | 20.0                 | 9.1                    |
| Left-censored N                                 |              | 1,173             | 1,307                | 1,340                  |
| Ν                                               |              | 1,561             | 1,561                | 1,561                  |

43/17

\*p < 0.1, \*\*p < 0.05, \*\*\*p < 0.01. Dependent Variable equals log average value of (cash) gifts given per adult in HH. Column 1 consists of gifts to all family, column 2 to direct family who have their own households, column 3 to other extended family, column 4 to village friends. Won in Private/Public  $\in \{0, 1\}$ Tobit estimator used in all columns. Network denotes network size.



# Shutdown Reciprocity

### THOSE LIKELY TO SHUTDOWN DID NOT RECEIVE GIFTS

|                                     |              | (1)           | (2)             | (3)       |
|-------------------------------------|--------------|---------------|-----------------|-----------|
| RECEIVE Gifts                       |              | Value (Total) | Value (Average) | Number    |
| Won Private in Past?                | βv           | 0.105         | 0.0781          | 0.0148    |
|                                     | -            | (0.166)       | (0.134)         | (0.138)   |
| Won Private in Past? × Network      | $\beta_{vg}$ | -0.00883      | -0.00587        | -0.00744  |
|                                     |              | (0.012)       | (0.010)         | (0.011)   |
| Won Public in Past?                 | βь           | 0.339**       | 0.245*          | 0.330**   |
|                                     |              | (0.170)       | (0.138)         | (0.138)   |
| Won Public in Past? $	imes$ Network | $\beta_{bq}$ | -0.0252*      | -0.0186*        | -0.0218** |
|                                     |              | (0.013)       | (0.011)         | (0.011)   |
| Round $	imes$ Village FE            |              | Yes           | Yes             | Yes       |
| Left-censored N                     |              | 1,297         | 1,297           | 1,297     |
| Ν                                   |              | 1,561         | 1,561           | 1,561     |

44/17

\*p < 0.1, \*\*p < 0.05, \*\*\*p < 0.01. Dependent Variable equals log total value of (cash) gifts received per adult in HH in column 1; log average value of (cash) gifts received per adult in column 2; number of (cash) gifts received per adult in column 3. "Won Private/Public in Past?"  $\in \{0, 1\}$  indicates whether household won lottery at any point in current or up to past 2 rounds. Tobit estimator used in all columns. Network denotes network size.

